Direct forms of solar energy

annual Sun's radiation

annual Sun's radiation

solar

Source: PVGIS © European Communities, 2001-2008

Portugal: 7 - 7.6 kWh/m²

+30% central Europe

Portugal: 1.6 - 2.2 kWh/m² 2 times central Europe Sun's path

Low temperature solar collectors

solar

Low temperature solar collectors

glazed flat plane collector

Insulation: to the bottom and sides of the collector to reduce the loss of heat

Absorber plate: usually black chrome absorbing coating to maximise heat collecting efficiency

Pumped solar system

Ċ

thermosiphon solar system

evacuated solar tubes

world thermal power capacity

FIGURE 15. SOLAR WATER HEATING GLOBAL CAPACITY ADDITIONS, SHARES OF TOP 12 COUNTRIES, 2011

Area: 70 x 10⁶ m²

$$Q = mc(T_f - T_i) [\mathsf{J}] \qquad \dot{Q} = \dot{m}c(T_f - T_i) [\mathsf{W}]$$

m mass [kg]

- \dot{m} mass flow [kg/s]
- c fluid thermal capacity [J/(kgK)]
- T_f output temperature [K]
- T_i input temperature [K]

 $\dot{Q}_u = GA_c - \rho GA_c - (T_{abs} - T_{amb})UA_t$

collector efficiency

solar collector efficiency

 Q_u

- solar collector efficiency
- pipes thermal losses
- storage tank thermal losses

system efficiency

unglazed solar collectors

- low water temperature
- for swimming pools (no storage tank needed)
- evaporator component of heat pump

installed solar collectors by type

costs			solar	
Technology	Typical Characteristics	Capital Costs (USD/kW)		Typical Energy Costs (LCOE – U.S. cents/kWh)
Hot Water/Heating/Cooling (continued)				
Solar thermal: Domestic hot water systems	Collector type: flat-plate, evacuated tube (thermosiphon and pumped systems) Plant size: 2.1–4.2 kW _{th} (single family); 35 kW _{th} (multi-family) Efficiency: 100%	Single-family: 1,100–2,140 (OECD, new build); 1,300–2,200 (OECD, retrofit) 150–635 (China) Multi-family: 950–1,850 (OECD, new build); 1,140–2,050 (OECD, retrofit)		1.5–28 (China)
Solar thermal: Domestic heat and hot water systems (combi)	Collector type: same as water only Plant size: 7–10 kW _{th} (single-family); 70–130 kW _{th} (multi-family); 70–3,500 kW _{th} (district heating); >3,500 kW _{th} (district heat with seasonal storage) Efficiency: 100%	Single-family: same as water only Multi-family: same as water only District heat (Europe): 460–780; with storage: 470–1,060		5–50 (domestic hot water) District heat: 4 and up (Denmark)

OUTROS SISTEMAS SOLARES

DESTILADOR SOLAR

PAREDES DE ACUMULAÇÃO

FORNO SOLAR

BIBLIOGRAFIA

Ehrlich, R. Renewable Energy, a first course **Solar Thermal** (10.1 a 10.5, 10.8, 10.11)

Boyle, G. Renewable Energy, Power for Sustainable Future **Solar Thermal Energy** (2.6, 2.10)

